RAINFOREST INFORMATION

By Rhett A. Butler  Last updated Aug 14, 2020

A Place Out of Time: Tropical Rainforests and the Perils They Face - information on tropical forests, deforestation, and biodiversity

RAINFOREST FACTS

  • Tropical forests presently cover about 1.84 billion hectares or about 12 percent of Earth's land surface (3.6% of Earth's surface).
  • The world's largest rainforest is the Amazon rainforest
  • Brazil has the largest extent of rainforest cover, including nearly two-thirds of the Amazon.
  • Rainforests also exist outside the tropics, including temperate North America, South America, Australia, and Russia.
  • An estimated 50 percent of terrestrial biodiversity is found in rainforests
  • Rainforests are thought to store at least 250 billion tons of carbon
  • Deforestation and degradation of tropical forests account for roughly 10 percent of global greenhouse emissions from human activities

 

Sections:

 

BACKGROUND INFORMATION ON THE RAINFOREST

Rainforests are forest ecosystems characterized by high levels of rainfall, an enclosed canopy and high species diversity. While tropical rainforests are the best-known type of rainforest and the focus of this section of the web site, rainforests are actually found widely around the world, including temperate regions in Canada, the United States, and the former Soviet Union.

Tropical rainforests typically occur in the equatorial zone between the Tropic of Cancer and Tropic of Capricorn, latitudes that have warm temperatures and relatively constant year-round sunlight. Tropical rainforests merge into other types of forest depending on the altitude, latitude, and various soil, flooding, and climate conditions. These forest types form a mosaic of vegetation types which contribute to the incredible diversity of the tropics.

The bulk of the world's tropical rainforest occurs in the Amazon Basin in South America. The Congo Basin and Southeast Asia, respectively, have the second and third largest areas of tropical rainforest. Rainforests also exist on some the Caribbean islands, in Central America, in India, on scattered islands in the South Pacific, in Madagascar, in West and East Africa outside the Congo Basin, in Central America and Mexico, and in parts of South America outside the Amazon. Brazil has the largest extent of rainforest of any country on Earth.

 

Rainforests provide important ecological services, including storing hundreds of billions of tons of carbon, buffering against flood and drought, stabilizing soils, influencing rainfall patterns, and providing a home to wildlife and Indigenous people. Rainforests are also the source of many useful products upon which local communities depend.

While rainforests are critically important to humanity, they are rapidly being destroyed by human activities. The biggest cause of deforestation is conversion of forest land for agriculture. In the past subsistence agriculture was the primary driver of rainforest conversion, but today industrial agriculture — especially monoculture and livestock production — is the dominant driver of rainforest loss worldwide. Logging is the biggest cause of forest degradation and usually proceeds deforestation for agriculture.

Organization of this site

The rainforest section of Mongabay is divided into ten "chapters" (the original text for the site was a book, but has since been adapted for the web), with add-on content in the form of special focal sections (e.g. The Amazon, the Congo, REDD, New Guinea, Sulawesi, Forests in Brazil, etc), appendices, and other resources.

There is also a version of the site geared toward younger readers at kids.mongabay.com.

Tropical rainforest in Borneo. Photo by Rhett A. Butler

ABOUT THE RAINFOREST (SUMMARY)

Chapter 1:

RAINFOREST DISTRIBUTION AND CHARACTERISTICS

Each rainforest is unique, but there are certain features common to all tropical rainforests.

  • Location: rainforests lie in the tropics.
  • Rainfall: rainforests receive at least 80 inches (200 cm) of rain per year.
  • Canopy: rainforests have a canopy, which is the layer of branches and leaves formed by closely spaced rainforest trees some 30 meters (100 feet) off the ground. A large proportion of the plants and animals in the rainforest live in the canopy.
  • Biodiversity: rainforests have extraordinarily highs level of biological diversity or “biodiversity”. Scientists estimate that about half of Earth's terrestrial species live in rainforests.
  • Ecosystem services: rainforests provide a critical ecosystem services at local, regional, and global scales, including producing oxygen (tropical forests are responsible for 25-30 percent of the world's oxygen turnover) and storing carbon (tropical forests store an estimated 229-247 billion tons of carbon) through photosynthesis; influencing precipitation patterns and weather; moderating flood and drought cycles; and facilitating nutrient cycling; among others.

The global distribution of tropical rainforests can be broken up into four biogeographical realms based roughly on four forested continental regions: the Afrotropical, the Australiasian, the Indomalayan/Asian, and the Neotropical. Just over half the world's rainforests lie in the Neotropical realm, roughly a quarter are in Africa, and a fifth in Asia.

Map showing the world's rainforests, defined as primary forests in the tropics. Click to enlarge.

These realms can be further divided into major tropical forest regions based on biodiversity hotspots, including:

  1. Amazon: Includes parts of Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname, Venezuela
  2. Congo: Includes parts of Cameroon, Central African Republic, Democratic Republic of the Congo, Equatorial Guinea, Gabon, Republic of Congo
  3. Australiasia: Includes parts of Australia, Indonesian half of New Guinea, Papua New Guinea
  4. Sundaland: Includes parts of Brunei, Indonesia, Malaysia, Singapore
  5. Indo-Burma: Includes parts of Bangladesh, Cambodia, China, India, Laos, Myanmar, Thailand, Vietnam
  6. Mesoamerica: Includes parts of Belize, Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama
  7. Wallacea: Sulawesi and the Maluku islands in Indonesia
  8. West Africa: Includes parts of Benin, Cameroon, Côte d'Ivoire, Ghana, Guinea, Liberia, Nigeria, Sierra Leone, Togo
  9. Atlantic forest: Includes parts of Argentina, Brazil, Paraguay
  10. Choco: Includes parts of Colombia, Ecuador, Panama

Dozens of countries have tropical forests. The countries with the largest areas of tropical forest are:

  • Brazil
  • Democratic Republic of Congo (DRC)
  • Indonesia
  • Peru
  • Colombia

Other countries that have large areas of rainforest include Bolivia, Cameroon, Central African Republic, Ecuador, Gabon, Guyana, India, Laos, Malaysia, Mexico, Myanmar, Papua New Guinea, Republic of Congo, Suriname, and Venezuela.

Cover and loss by rainforest region

Primary forest extentTree cover extent
Rainforest region200120102020200120102020
Amazon556.7543.5526.2673.4658.6628.9
Congo173.7172.2167.6301.2300.3287.7
Australiasia61.865.464.476.391.389.1
Sundaland39.957.351.067.7121.6103.1
Indo-Burma15.342.640.137.8153.0139.1
Mesoamerica43.717.416.0160.354.349.8
Wallacea18.115.214.656.226.124.5
West Africa9.810.910.215.648.541.8
Atlantic forest11.19.79.349.396.389.0
Choco10.08.58.499.815.915.6
PAN-TROPICS1,029.61,006.5969.12,028.31,959.41,839.1

 

Primary forest lossTree cover change
2002-092010-192002-092010-19
Rainforest regionM ha (%)M ha (%)M ha (%)M ha (%)
Amazon-13.18 (-2.4%)-17.28 (-3.2%)-14.7 (-2.2%)-29.8 (-4.5%)
Congo-1.46 (-0.8%)-4.68 (-2.7%)-0.8 (-0.3%)-12.7 (-4.2%)
Australiasia-0.29 (-0.5%)-0.86 (-1.3%)0.2 (0.2%)-1.4 (-1.5%)
Sundaland-2.22 (-5.5%)-3.67 (-6.4%)-1.5 (-2.3%)-9.5 (-7.8%)
Indo-Burma-1.62 (-10.5%)-2.14 (-5.0%)-0.6 (-1.6%)-6.4 (-4.2%)
Mesoamerica-1.10 (-2.5%)-2.51 (-14.4%)-7.3 (-4.6%)-13.9 (-25.6%)
Wallacea-0.66 (-3.6%)-1.36 (-8.9%)-1.9 (-3.3%)-4.6 (-17.5%)
West Africa-0.30 (-3.1%)-0.50 (-4.6%)-0.1 (-0.8%)-1.2 (-2.4%)
Atlantic forest-0.24 (-2.1%)-0.62 (-6.4%)-0.7 (-1.5%)-6.8 (-7.0%)
Choco-0.33 (-3.3%)-0.35 (-4.1%)-3.5 (-3.5%)-7.3 (-46.0%)
PAN-TROPICS-23.11 (-2.2%)-37.34 (-3.7%)-68.9 (-3.4%)-120.3 (-6.1%)

 

Bar chart showing the world's largest rainforests as defined by the area of primary forest cover according to Hansen / WRI 2020.
Bar chart showing the world's largest rainforests as defined by the area of primary forest cover according to Hansen / WRI 2020.
Tropical primary forest cover and tree cover by country in 2020

Tropical forest cover and loss by country

Units: million hectaresPrimary forest extentTree cover extent
2001
Country200120102020200120102020
Brazil343.2331.9318.7516.4498.1468.2
DR Congo104.6103.499.8198.8198.5188.0
Indonesia93.890.284.4159.8157.7141.7
Colombia54.854.253.381.681.779.3
Peru69.168.567.277.978.676.5
Bolivia40.839.938.164.462.758.9
Venezuela38.638.538.156.457.356.1
Angola2.52.42.349.748.346.8
Central African Republic7.47.37.246.947.146.6
Papua New Guinea32.632.431.942.942.941.9
Mexico9.29.08.643.342.540.3
China1.71.71.742.841.138.5
Myanmar14.013.813.542.840.938.2
India10.210.19.935.131.430.2
Cameroon19.119.018.530.629.728.7
Republic of Congo21.221.120.826.426.626.0
Argentina4.44.24.030.927.624.9
Gabon22.722.622.424.724.724.4
Malaysia15.915.013.329.128.623.8
Mozambique0.10.10.126.625.023.1
Tanzania0.70.70.721.820.619.3
Guyana17.317.317.219.019.118.9
Ecuador10.610.610.518.318.518.1
Thailand5.95.95.819.819.017.7
Philippines4.64.54.418.318.117.4
Paraguay3.53.02.523.920.216.6
Zambia0.30.30.318.517.416.6
Laos8.38.17.519.117.915.4
Suriname12.812.712.613.914.013.9
Rest of the tropics59.658.053.9210.1203.5183.3
Grand Total1,029.61,006.5969.12,009.71,959.41,839.1

 

Primary forest lossTree cover change
2002-092010-20192002-092010-2019
CountryM ha (%)M ha (%)M ha (%)M ha (%)
Brazil-11.37 (-3.3%)-13.15 (-4.0%)-18.25 (-3.5%)-29.93 (-6.0%)
DR Congo-1.16 (-1.1%)-3.67 (-3.5%)-0.37 (-0.2%)-10.50 (-5.3%)
Indonesia-3.63 (-3.9%)-5.85 (-6.5%)-2.09 (-1.3%)-15.98 (-10.1%)
Colombia-0.54 (-1.0%)-0.96 (-1.8%)0.17 (0.2%)-2.43 (-3.0%)
Peru-0.60 (-0.9%)-1.37 (-2.0%)0.68 (0.9%)-2.10 (-2.7%)
Bolivia-0.90 (-2.2%)-1.84 (-4.6%)-1.67 (-2.6%)-3.75 (-6.0%)
Venezuela-0.15 (-0.4%)-0.33 (-0.9%)0.86 (1.5%)-1.14 (-2.0%)
Angola-0.03 (-1.2%)-0.09 (-3.8%)-1.37 (-2.8%)-1.51 (-3.1%)
Central African Republic-0.05 (-0.6%)-0.11 (-1.5%)0.15 (0.3%)-0.49 (-1.0%)
Papua New Guinea-0.19 (-0.6%)-0.55 (-1.7%)0.04 (0.1%)-1.05 (-2.4%)
Mexico-0.20 (-2.1%)-0.40 (-4.4%)-0.81 (-1.9%)-2.22 (-5.2%)
China-0.03 (-1.9%)-0.04 (-2.4%)-1.67 (-3.9%)-2.66 (-6.5%)
Myanmar-0.19 (-1.4%)-0.38 (-2.8%)-1.90 (-4.4%)-2.70 (-6.6%)
India-0.13 (-1.2%)-0.20 (-2.0%)-3.67 (-10.5%)-1.18 (-3.8%)
Cameroon-0.11 (-0.6%)-0.50 (-2.6%)-0.96 (-3.1%)-1.02 (-3.4%)
Republic of Congo-0.07 (-0.3%)-0.25 (-1.2%)0.28 (1.0%)-0.60 (-2.2%)
Argentina-0.19 (-4.4%)-0.21 (-5.0%)-3.31 (-10.7%)-2.69 (-9.8%)
Gabon-0.08 (-0.3%)-0.16 (-0.7%)0.02 (0.1%)-0.29 (-1.2%)
Malaysia-0.98 (-6.2%)-1.65 (-11.0%)-0.47 (-1.6%)-4.84 (-16.9%)
Mozambique0.00 (-1.6%)-0.01 (-7.5%)-1.60 (-6.0%)-1.95 (-7.8%)
Tanzania-0.01 (-0.9%)-0.02 (-2.8%)-1.21 (-5.5%)-1.31 (-6.3%)
Guyana-0.03 (-0.2%)-0.09 (-0.5%)0.07 (0.3%)-0.14 (-0.8%)
Ecuador-0.05 (-0.5%)-0.12 (-1.2%)0.20 (1.1%)-0.43 (-2.3%)
Thailand-0.07 (-1.2%)-0.05 (-0.9%)-0.75 (-3.8%)-1.31 (-6.9%)
Philippines-0.05 (-1.1%)-0.09 (-2.1%)-0.18 (-1.0%)-0.80 (-4.4%)
Paraguay-0.46 (-13.3%)-0.53 (-17.7%)-3.69 (-15.4%)-3.60 (-17.8%)
Zambia0.00 (-1.0%)-0.02 (-6.5%)-1.07 (-5.8%)-0.77 (-4.4%)
Laos-0.23 (-2.7%)-0.55 (-6.8%)-1.15 (-6.0%)-2.58 (-14.4%)
Suriname-0.02 (-0.2%)-0.10 (-0.8%)0.05 (0.4%)-0.14 (-1.0%)
Rest of the tropics-1.59 (-2.7%)-4.04 (-7.0%)-6.59 (-3.1%)-20.17 (-9.9%)
Grand Total-23.11 (-2.2%)-37.34 (-3.7%)-50.27 (-2.5%)-120.27 (-6.1%)

 

Chapter 2:

RAINFOREST STRUCTURE

Rainforests are characterized by a unique vegetative structure consisting of several vertical layers including the overstory, canopy, understory, shrub layer, and ground level. The canopy refers to the dense ceiling of leaves and tree branches formed by closely spaced forest trees. The upper canopy is 100-130 feet above the forest floor, penetrated by scattered emergent trees, 130 feet or higher, that make up the level known as the overstory. Below the canopy ceiling are multiple leaf and branch levels known collectively as the understory. The lowest part of the understory, 5-20 feet (1.5-6 meters) above the floor, is known as the shrub layer, made up of shrubby plants and tree saplings.

Chapter 3:

RAINFOREST BIODIVERSITY

Tropical rainforests support the greatest diversity of living organisms on Earth. Although they cover less than 2 percent of Earth’s surface, rainforests house more than 50 percent of the plants and animals on the planet.

There are several reasons why rainforests are so diverse. Some important factors are:
  • Climate: because rainforests are located in tropical regions, they receive a lot of sunlight. The sunlight is converted to energy by plants through the process of photosynthesis. Since there is a lot of sunlight, there is a lot of energy in the rainforest. This energy is stored in plant vegetation, which is eaten by animals. The abundance of energy supports an abundance of plant and animal species.
  • Canopy: the canopy structure of the rainforest provides an abundance of places for plants to grow and animals to live. The canopy offers sources of food, shelter, and hiding places, providing for interaction between different species. For example, there are plants in the canopy called bromeliads that store water in their leaves. Frogs and other animals use these pockets of water for hunting and laying their eggs.
  • Competition: while there is lots of energy in the rainforest system, life is not easy for most species that inhabit the biome. In fact, the rainforest is an intensively competitive place, with species developing incredible strategies and innovations to survive, encouraging specialization.
While species everywhere are known for utilizing symbiotic relationships with other species to survive, the biological phenomenon is particularly abundant in rainforests.

 

Chapter 4:

THE RAINFOREST CANOPY

In the rainforest most plant and animal life is not found on the forest floor, but in the leafy world known as the canopy. The canopy, which may be over 100 feet (30 m) above the ground, is made up of the overlapping branches and leaves of rainforest trees. Scientists estimate that more than half of life in the rainforest is found in the trees, making this the richest habitat for plant and animal life.

The conditions of the canopy are markedly different from the conditions of the forest floor. During the day, the canopy is drier and hotter than other parts of the forest, and the plants and animals that live there have adapted accordingly. For example, because the amount of leaves in the canopy can make it difficult to see more than a few feet, many canopy animals rely on loud calls or lyrical songs for communication. Gaps between trees mean that some canopy animals fly, glide, or jump to move about in the treetops. Meanwhile plants have evolved water-retention mechanisms like waxy leaves.

Scientists have long been interested in studying the canopy, but the height of trees made research difficult until recently. Today the canopy is commonly accessed using climbing gear, rope bridges, ladders, and towers. Researchers are even using model airplanes and quadcopters outfitted with special sensors — conservation drones — to study the canopy.



Chapter 5:

The rainforest floor

The rainforest floor is often dark and humid due to constant shade from the leaves of canopy trees. The canopy not only blocks out sunlight, but dampens wind and rain, and limits shrub growth.

Despite its constant shade, the ground floor of the rainforest is the site for important interactions and complex relationships. The forest floor is one of the principal sites of decomposition, a process paramount for the continuance of the forest as a whole. It provides support for trees responsible for the formation of the canopy and is also home to some of the rainforest's best-known species, including gorillas, tigers, tapirs, and elephants, among others.

Rainforest in Tangkoko National Park, North Sulawesi Province, Indonesia in 2017. Photo by Rhett A. Butler
Chapter 6:

Rainforest waters

Tropical rainforests support some of the largest rivers in the world, like the Amazon, Mekong, Negro, Orinoco, and Congo. These mega-rivers are fed by countless smaller tributaries, streams, and creeks. For example, the Amazon alone has some 1,100 tributaries, 17 of which are over 1,000 miles long. Although large tropical rivers are fairly uniform in appearance and water composition, their tributaries vary greatly.

Rainforest waters are home to a wealth of wildlife that is nearly as diverse as the biota on land. For example, more than 5,600 species of fish have been identified in the Amazon Basin alone.

But like rainforests, tropical ecosystems are also threatened. Dams, deforestation, channelization and dredging, pollution, mining, and overfishing are chief dangers.

Chapter 7:

Rainforest people

Tropical rainforests have long been home to tribal peoples who rely on their surroundings for food, shelter, and medicines. Today very few forest people live in traditional ways; most have been displaced by outside settlers, have been forced to give up their lifestyles by governments, or have chosen to adopt outside customs.

Of the remaining forest people, the Amazon supports the largest number of Indigenous people living in traditional ways, although these people, too, have been impacted by the modern world. Nonetheless, Indigenous peoples' knowledge of medicinal plants remains unmatched and they have a great understanding of the ecology of the Amazon rainforest.

In Africa there are native forest dwellers sometimes known as pygmies. The tallest of these people, also called the Mbuti, rarely exceed 5 feet in height. Their small size enables them to move about the forest more efficiently than taller people.

There are few forest peoples in Asia living in fully traditional ways. The last nomadic people in Borneo are thought to have settled in the late 2000's. New Guinea and the Andaman Islands are generally viewed as the last frontiers for forest people in Asia and the Pacific.

Chapter 8:

Deforestation

Every year an area of rainforest the size of New Jersey is cut down and destroyed, mostly the result of human activities. We are cutting down rainforests for many reasons, including:

  • wood for both timber and making fires;
  • agriculture for both small and large farms;
  • land for poor farmers who don’t have anywhere else to live;
  • grazing land for cattle (the single biggest driver of deforestation in the Amazon);
  • plantations, including wood-pulp for making paper, oil palm for making palm oil, and rubber;
  • road construction; and
  • extraction of minerals and energy.

In recent decades there has been an important shift in deforestation trends. Today export-driven industries are driving a bigger share of deforestation than ever before, marking a shift from previous decades, when most tropical deforestation was the product of poor farmers trying to put food on the table for their families. There are important implications from this change. While companies have a greater capacity to chop down forests than small farmers, they are more sensitive to pressure from environmentalists. Thus in recent years, it has become easier—and more ethical—for green groups to go after corporations than after poor farmers.

Rainforests are also threatened by climate change, which is contributing to droughts in parts of the Amazon and Southeast Asia. Drought causes die-offs of trees and dries out leaf litter, increasing the risk of forest fires, which are often set by land developers, ranchers, plantation owners, and loggers.

Tropical primary forest cover and tree cover by country in 2020
Chapter 9:

Rainforest importance

While rainforests may seem like a distant concern, they are critically important for our well-being. Rainforests are often called the lungs of the planet for their role in absorbing carbon dioxide, a greenhouse gas, and producing oxygen, upon which all animals depend for survival. Rainforests also stabilize climate, house incredible amounts of plants and wildlife, and produce nourishing rainfall all around the planet.

Rainforests:

  • Help stabilize the world’s climate: Rainforests help stabilize the world’s climate by absorbing carbon dioxide from the atmosphere. Scientists have shown that excess carbon dioxide in the atmosphere from human activities is contributing to climate change. Therefore, living rainforests have an important role in mitigating climate change, but when rainforests are chopped down and burned, the carbon stored in their wood and leaves is released into the atmosphere, contributing to climate change.
  • Provide a home to many plants and animals: Rainforests are home to a large number of the world’s plant and animals species, including many endangered species. As forests are cut down, many species are doomed to extinction.
  • Help maintain the water cycle: The role of rainforests in the water cycle is to add water to the atmosphere through the process of transpiration (in which plants release water from their leaves during photosynthesis). This moisture contributes to the formation of rain clouds, which release the water back onto the rainforest. In the Amazon, 50-80 percent of moisture remains in the ecosystem’s water cycle. When forests are cut down, less moisture goes into the atmosphere and rainfall declines, sometimes leading to drought. Rainforests also have a role in global weather patterns. For example researchers have shown that forests in South America affect rainfall in the United States, while forests in Southeast Asia influence rain patterns in southeastern Europe and China. Distant rainforests are therefore important to farmers everywhere.
  • Protect against flood, drought, and erosion: Rainforests have been compared to natural sponges, moderating flood and drought cycles by slowing run-off and contributing moisture to the local atmosphere. Rainforests are also important in reducing soil erosion by anchoring the ground with their roots. When trees are cut down there is no longer anything to protect the ground, and soils are quickly washed away with rain. On steep hillsides, loss of forest can trigger landslides.
  • Are a source for medicines and foods and support forest-dependent people: People have long used forests as a source of food, wood, medicine, and recreation. When forests are lost, they can no longer provide these resources. Instead people must find other places to get these goods and services. They also must find ways to pay for the things they once got for free from the forest.
Chapter 10:

Rainforest conservation

Rainforests are disappearing very quickly. The good news is there are a lot of people who want to save rainforests. The bad news is that saving rainforests will be a challenge as it means humanity will need to shift away from business-as-usual practices by developing new policies and economic measures to creative incentives for preserving forests as healthy and productive ecosystems.

Over the past decade there has been considerable progress on several conservation fronts. Policymakers and companies are increasingly valuing rainforests for the services they afford, setting aside large blocks of forests in protected areas and setting up new financial mechanisms that compensate communities, state and local governments, and countries for conserving forests. Meanwhile, forest-dependent people are gaining more management control over the forests they have long stewarded. Large international companies are finally establishing policies that exclude materials sourced via deforestation. People are abandoning rural areas, leading to forest recovery in some planes.

But the battle is far from over. Growing population and consumption means that rainforests will continue to face intense pressures. At the same time, climate change threatens to dramatically alter temperatures and precipitation patterns, potentially pushing some forests toward critical tipping points.

Thus the future of the world's rainforests in very much in our hands. The actions we take in the next 20 years will determine whether rainforests, as we currently know them, are around to sustain and nourish future generations of people and wildlife.

The Latest News on Rainforests

Brazil sets a date to remove illegal miners from Munduruku land, more details await (Nov 6 2024)
- There’s a planned start date to remove illegal gold miners from the Munduruku Indigenous territory, where they have long decimated the Munduruku people’s health and the Amazon ecosystem with mercury contamination, prosecutors share with Mongabay.
- The date and removal operation remains confidential, with government sources gathering data on the areas most affected in the region. The government may share more information during a press briefing in early November, while some news sites suggest the operation will begin in a few days and involve the defense ministry.
- The Supreme Court and Indigenous peoples have called for the removal of the miners from the region for years, to little avail. Meanwhile, other sources say the government had to prioritize crises in other Indigenous lands like the Yanomami territory.
- According to a researcher, the expulsion of gold miners from another Munduruku territory, the Sawré Muybu Indigenous land, cannot begin until the president recognizes the territory.

What was achieved, and not, for Indigenous and local leaders at COP16 (Nov 6 2024)
- Although some outcomes of this year’s U.N. biodiversity conference, or COP16, were viewed by some as historic achievements for Indigenous and Afro-descendent peoples, many groups were left disappointed.
- One of the most significant wins was the acknowledgment of Afro-descendants as essential actors in the care and protection of biodiversity, the decision on Article 8(j), and the adoption of the ‘Cali Fund.’
- However, many were disappointed by the failure to reach a consensus on resource mobilization, direct funding for Indigenous peoples and local communities and the lack of progress on the monitoring framework to achieve targets and goals to restore nature.
- Mongabay spoke with several Indigenous delegates attending the conference to gauge their thoughts on the conference.

Atmospheric methane removal: A promising but challenging climate solution (Nov 6 2024)
- Methane is currently responsible for about one-third of global warming. This greenhouse gas is about 80 times more potent than carbon dioxide in terms of its ability to heat up the climate system, though methane molecules only persist in the atmosphere for seven to 12 years before breaking down.
- Methane emissions are a major cause for concern, as they’ve been increasing at record speeds the past five years. At least two-thirds of annual methane emissions now come from human activities, including livestock, agriculture, fossil fuels, and landfills and other waste. Climate change is also increasing methane releases.
- Removing atmospheric methane is a tempting prospect as a climate change-curbing strategy. Multiple geoengineering approaches are being considered, but research remains limited and largely theoretical, while environmental impacts largely remain unknown and underexplored.
- Researchers say methane removal technologies, such as the iron salt method, should be investigated to break down atmospheric methane molecules. But scientists interviewed for this story repeatedly emphasized the most urgent need is to simultaneously make rapid deep cuts to human-caused methane emissions.

Do forest conservation pledges work? (commentary) (Nov 6 2024)
- The New York Declaration on Forests was agreed with great hope 10 years ago, but the world missed its 2020 target and is off track to end deforestation by 2030. Does this mean that forest pledges don’t work?
- It would be naive to expect pledges like it to quickly resolve decades long economic and political battles over land: their effect is limited without changes to forest funding, because forest clearance is usually driven by economic calculation.
- “The NYDF has not made history, but it did help redirect attention in a distracted world and create a benchmark for progress. Without it and the Glasgow Declaration, there would be less support for the many communities and institutions who are helping protect the two thirds of remaining tropical forests which are still standing,” a new op-ed states.
- This article is a commentary. The views expressed are those of the author, not necessarily Mongabay.

Indonesia fisheries minister eyes aquaculture expansion under Prabowo (Nov 6 2024)
- Indonesia’s new president, Prabowo Subianto, has retained incumbent fisheries minister Sakti Wahyu Trenggono to oversee expansion in productivity in captive fisheries over the next five years.
- Sakti has pledged to revive ailing aquaculture ponds, most of which are located on the northern coast of Java, where numerous village fishing economies are struggling amid depleted near-shore fish stocks and coastal development.
- In July, Indonesia’s then-vice president, Ma’ruf Amin, told a fisheries summit that climate change, biodiversity loss and environmental damage had hindered the output of near-shore fisheries in the world’s largest archipelagic country.

New standard for ethical palm oil faces backlash before it’s even issued (Nov 6 2024)
- The Roundtable on Sustainable Palm Oil (RSPO) is expected to issue a new standard for its member companies to abide by when it holds its annual general meeting next week.
- The new standard, an update to the existing guidelines issued in 2018, brings improvements in environmental and social safeguards, according to the RSPO.
- But advocacy groups say it introduces loopholes that could allow for greater forest loss, including a new definition of what constitutes high-carbon stock forests, a dispensation for deforestation on Indigenous lands, and allowing deforestation as long as it’s compensated for.
- The RSPO has refuted these interpretations, saying the new standard is designed to be even more stringent than the current one and that undoing the progress it’s made would be “ill-advised.”

Report reveals how environmental crime profits in the Amazon are laundered (Nov 5 2024)
- A recent report from the FACT Coalition analyzed 230 cases of environmental crime in Amazon countries over the past decade to better understand how crimes are committed and how the associated profits are laundered.
- It found that the U.S. is the most common foreign destination for the products and proceeds of environmental crimes committed in the Amazon region.
- The most popular way to launder money involves the use of shell and front companies, and corruption was the single most prevalent convergent crime mentioned.
- Of the cases analyzed, only one in three appears to have included a parallel financial investigation.

Is the delay of Europe’s deforestation regulation a cause for regret, or an opportunity? (commentary) (Nov 5 2024)
- In early October, the European Commission proposed a one-year postponement of the EU’s new deforestation regulation (EUDR) in order to assist global stakeholders, member states and other countries in their preparations.
- Is such a delay to be lamented, as many NGOs and commentators say? This is happening in a context of the weakening of many environmental measures, after all.
- “This ambitious regulation, with its undeniable objectives, is ill-conceived – because it ignores the problems of implementation – and is giving rise to unprecedented diplomatic tensions. Shouldn’t we take advantage of this probable postponement to try and correct some of the text’s major flaws?” a new op-ed asks.
- This article is a commentary. The views expressed are those of the author, not necessarily Mongabay.

U.S. toughens stance on plastics production in run-up to key treaty summit (Nov 5 2024)
- The United States has revised its position regarding ongoing U.N. plastics treaty negotiations. The U.S. originally wanted a treaty based on voluntary nation-by-nation compliance, with the emphasis on improved plastics recycling and reuse. The new U.S. position recognizes the need to regulate plastics over their entire life cycle, including production.
- Analysts say the shift in U.S. position could help soften the positions of China, Russia, India and Saudi Arabia, nations that have vigorously opposed efforts to regulate production. All of these nations are major petrochemical and/or oil producers.
- The U.N. Intergovernmental Negotiating Committee on Plastic Pollution is set to meet from Nov. 25-Dec. 1 in Busan, South Korea, where it plans to finalize treaty language. However, failing this, the treaty talks might continue next year.
- The U.S. election throws doubt on what the nation’s final position might be after the treaty language is finalized. It seems likely that a Kamala Harris administration would press for treaty ratification, while a Donald Trump administration could try to derail a final agreement (as was the case with the Paris climate agreement), especially if it regulates plastics production.

Can cattle and wildlife co-exist in the Maasai Mara? A controversial study says yes (Nov 5 2024)
- Conventional conservation wisdom has held that cattle herds managed by Indigenous Maasai in East Africa compete with wildlife for grazing land and degrade protected areas like Kenya’s Maasai Mara and Tanzania’s Ngorongoro.
- But a new research study shows that, in a small study patch of the Maasai Mara, cattle herds didn’t cause a decline in forage quantity or quality, nor did wildlife steer away from areas where cattle had grazed.
- The finding has drawn criticism from other researchers, who question its methodology and say the overwhelming evidence points to the need for restrictions on cattle grazing inside these protected areas.
- The study authors say they hope their findings spark new thinking about how pastoralists like the Maasai can be seen as potential conservation partners rather than excluded as they’ve been for decades.

Lesser noddy sighting stirs up birding community in Bangladesh (Nov 5 2024)
- In September, near Bangladesh’s Sonadia Island, an ornithologist and a birdwatcher recorded the sighting of lesser noddies, a seabird species never seen in Bangladesh before.
- Lesser noddies are tropical terns known to be confined to the Indian Ocean.
- Experts say it is unknown why lesser noddies traveled to Bangladesh, and predict that they will soon return to their original habitats after this temporary stopover.

Indonesian mother imprisoned for protesting palm oil factory next to school (Nov 5 2024)
- Gustina Salim Rambe, a mother from North Sumatra province, was sentenced in October to more than five months in prison following a demonstration against a palm oil factory built adjacent to two schools in Pulo Padang village.
- Representatives in Indonesia’s national Parliament had urged police to apply principles of “restorative justice” rather than criminalize Gustina.
- Civil society advocates pointed to separate regulations and laws that should protect from prosecution people who speak out against alleged environmental abuses.
- From 2019-24, Amnesty International recorded similar cases affecting 454 civil society advocate in Indonesia.

Africa needs COP29 funding & international finance reform to manage climate change (commentary) (Nov 4 2024)
- From 11 to 22 November, the world will be looking to leaders to ramp up action and financial support for nations on the frontlines of climate change.
- COP29 is billed as the ‘finance COP’ because it is time for countries to set a new global climate finance goal. Will Africa get the support it requires, this time?
- “It is important to acknowledge the significant role that the COPs play in addressing climate change [but] it is equally crucial to prioritize efforts aimed at comprehensively reforming the international financial infrastructure to ensure fair and just treatment of Africa,” writes Mongabay Africa’s program director.
- This article is a commentary. The views expressed are those of the author, not necessarily Mongabay.

Study finds bonobos more diverse, and more vulnerable, than previously thought (Nov 4 2024)
- Recently published research finds that bonobos show a much deeper degree of genetic diversity than previously thought, with the species split into three distinct subgroups that diverged tens of thousands of years ago.
- The study is based on a detailed analysis of the genomes of 30 wild-born captive bonobos, cross-referenced with more limited data from 136 wild bonobos.
- Separation into three genetically isolated groups means that each group is more vulnerable than a single unified population would be, and that loss of any of these groups would result in a significant loss of the species’ genetic diversity.

COP16 biodiversity meeting recap: Progress made, but finance lags (Nov 4 2024)
- The COP16 biodiversity summit ended on a mixed note. Delegates from 177 nations agreed to language saying that companies “should” pay conservation fees for genetic digital sequence information (DSI) from which they profit. Corporate lobbyists ensured this measure was voluntary, but tropical nations could build DSI fees into their laws.
- COP16 delegates also agreed to give Indigenous peoples and local communities a place at the negotiating table regarding conservation and sustainable use of biodiversity, with “fair and equitable” sharing of benefits.
- Oceans got a boost as a coalition of 11 philanthropies pledged $51.7 million to identify and expand marine protected areas in open oceans. The new Tropical Forest Forever Facility (TFFF) also moved toward launch. This novel funding mechanism could offer an estimated $4 billion annually to 70 tropical nations.
- NGOs and large philanthropies identified obstacles that must be cleared to redirect $1.7 trillion in national subsidies that now annually harm biodiversity. On the down side, COP16 utterly missed addressing the failure of wealthy nations to keep financial pledges to protect nature with $20 billion by 2025 and $200 billion by 2030.